Improved binding between copper and carbon nanotubes in a composite using oxygen-containing functional groups

Title
Improved binding between copper and carbon nanotubes in a composite using oxygen-containing functional groups
Authors
박미나김병현김상학한도석Gunn Kim이광렬
Keywords
carbon nanotube; metal; first principle calculation; binding energy; functional group
Issue Date
2011-03
Publisher
Carbon
Citation
VOL 49, NO 3, 811-818
Abstract
The adsorption of Cu on defective carbon nanotubes (CNTs) functionalized with various surface functional groups, including atomic oxygen (–O), hydroxyl (–OH) and carboxyl (–COOH) groups, was investigated by density functional theory calculation. The chemical interaction analysis revealed that the oxygen of the surface functional group can enhance the interaction between the carbon and Cu. The oxygen of the functional group could either promote electron exchange between Cu and carbon atoms, or directly interact with Cu and, thus, played a key role of a glue between the Cu and the CNT surfaces. Among the functional groups investigated, the carboxyl functional group resulted in the largest and most consistent increase in the Cu binding energies on both pristine and defective CNTs. The present calculations support recent experimental work suggesting an important role of interfacial oxygen in the improvement of the mechanical properties of CNT/Cu composites.
URI
http://pubs.kist.re.kr/handle/201004/45613
ISSN
0008-6223
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE