SnO2-coated LiCoO2 cathode material for high-voltage applications in lithium-ion batteries

Title
SnO2-coated LiCoO2 cathode material for high-voltage applications in lithium-ion batteries
Authors
차이룰 후다야박지훈이중기최원창
Keywords
tin oxide; lithium cobalt oxide; thin film coating; high-voltage cycling; lithium ion batteries
Issue Date
2014-03
Publisher
Solid state ionics
Citation
VOL 256, 89-92
Abstract
In order to improve the electrochemical performances of LiCoO2 cathode in high voltage cycling range (3.0-4.5 V), SnO2 thin film has been deposited on the surface of electrode material by an electron cyclotron resonance-metal organic chemical vapor deposition (ECR-MOCVD). Scanning electron microscopy (SEM) images and X-ray diffraction (XRD) patterns confirm the presence of SnO2 thin layers on the tape-casted electrode composed of nanocrystalline structure with agglomerated grain size ranging from 30 to 40 nm. The electrochemical tests show that the SnO2 coating layer significantly enhances the cycling performance of LiCoO2 cathode material. While the bare LiCoO2 cell does not work after 370 cycles, the surface-modified electrode exhibits the extended performance over 500 cycles with excellent capacity retention. In addition, it is also observed that SnO2 coating material is able to amplify the initial discharge capacity of bare LiCoO2 from 172 to183 mAhg-1 at 1 C and effectively increase the coulombic efficiency of pristine LiCoO2 cathode. We conclude that these electrochemical improvements are strongly due to the suppression of charge transfer resistance and prevention of side reactions during the charge/discharge process via surface coating of electrodes.
URI
http://pubs.kist.re.kr/handle/201004/47296
ISSN
01672738
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE