Carrier transport of inverted quantum dot LED with PEIE polymer

Title
Carrier transport of inverted quantum dot LED with PEIE polymer
Authors
손동익김홍희황도경서진원조성재최원국
Keywords
Charrier transport; Inverted quantum dot LED; Low-work function; PEIE
Issue Date
2014-04
Publisher
Organic electronics
Citation
VOL 15, NO 4, 886-892
Abstract
An inverted-type quantum-dot light-emitting-diode (QD LED), employing low-work function organic material polyethylenimine ethoxylated (PEIE) as electron injection layer, was fabricated by all solution processing method, excluding anode electrode. From transmission electron microscopy (TEM) and scanning electron microscopy (SEM) studies, it was confirmed that CdSe@ZnS QDs with 7 nm size were uniformly distributed as a monolayer on PEIE layer. In this inverted QD LED, two kinds of hybrid organic materials, [poly (9,9-di-n-octyl-fluorene-alt-benzothiadiazolo)(F8BT) + poly(N,N′-bis(4-butylphenyl)-N,N′-bis(phenyl)benzidine (poly-TPD)] and [4,4′-N,N′-dicarbazole-biphenyl (CBP) + poly-TPD], were adopted as hole transport layer having high highest occupied molecular orbital (HOMO) level for improving hole transport ability. At a low-operating voltage of 8 V, the device emits orange and red spectral radiation with high brightness up to 2450 and 1420 cd/㎡, and luminance efficacy of 1.4 cd/A and 0.89 cd/A, respectively, at 7 V applied bias. Also, the carrier transport mechanisms for the QD LEDs are described by using several models to fit the experimental I–V data.
URI
http://pubs.kist.re.kr/handle/201004/47305
ISSN
15661199
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE