Operating pressure dependence of the pressurized oxy-fuel combustion power cycle

Title
Operating pressure dependence of the pressurized oxy-fuel combustion power cycle
Authors
홍종섭Field, RandallGazzino, MarcoGhoniem, Ahmed
Keywords
oxy-fuel combustion; power cycle anlaysis; CO2 capture and sequestration
Issue Date
2010-12
Publisher
Energy
Citation
VOL 35, NO 12, 5391-5399
Abstract
Oxy-fuel combustion technology is an attractive option for capturing carbon dioxide (CO2) in power generation systems utilizing hydrocarbon fuels. However, conventional atmospheric oxy-fuel combustion systems require substantial parasitic energy in the compression step within the air separation unit (ASU), the flue gas recirculation system and the carbon dioxide purification and compression unit (CPU). Moreover, a large amount of flue gas latent enthalpy, which has high water concentration, is wasted. Both lower the overall cycle efficiency. Pressurized oxy-fuel combustion power cycles have been investigated as alternatives. Our previous study showed the importance of operating pressure for these cycles. In this paper, as the extended work of our previous study, we perform a pressure sensitivity analysis to determine the optimal combustor operating pressure for the pressurized oxy-fuel combustion power cycle.We calculate the energy requirements of the ASU and the CPU, which vary in opposite directions as the combustor operating pressure is increased.We also determine the pressure dependence of the watercondensing thermal energy recovery and its relation to the gross power output. The paper presents a detailed study on the variation of the thermal energy recovery rate, the overall compression power demand, the gross power output and the overall net efficiency.
URI
http://pubs.kist.re.kr/handle/201004/47445
ISSN
03605442
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE