Nanosheet-assembled 3D nanoflowers of ruthenium oxide with superior rate performance for supercapacitor applications

Title
Nanosheet-assembled 3D nanoflowers of ruthenium oxide with superior rate performance for supercapacitor applications
Authors
김지영김광헌김현경박상훈정경윤김광범
Keywords
electrochemical capacitors; nanostructured materials; MnO2 nanostructures; mesoporous carbon; energy-conversion; thin-films; storage; electrodes; spectroscopy; nanotubes
Issue Date
2014-08
Publisher
RSC advances
Citation
VOL 4, NO 31, 16115-16120
Abstract
Nanosheet-assembled 3D nanoflowers of ruthenium oxide were prepared by a microwave-hydrothermal process without using a template. The 3D nanoflowers consisted of interconnected spheres and had sizes of 250–300 nm. The mechanism of formation of the nanosheet-assembled 3D nanoflowers was determined on the basis of experimental evidence. The specific capacitance of an electrode based on these 3D nanoflowers was calculated and found to be 545.2 F g−1 at a discharging current density of 0.5 A g−1. The unique morphology of the nanoflowers allows H+ ions greater electrochemical access to the pores of the active RuO2 matrix, leading to a high specific capacitance. Moreover, the specific capacitance of the electrode decreased by only 8.6% (from 545.2 to 498.2 F g−1) as the discharging current density was increased from 0.5 to 50 A g−1, indicating its excellent rate capability. This superior rate capability could also be attributed to the porous nature of the nanoflowers. The excellent electrochemical properties of the 3D nanoflowers make them an attractive material for use in electrochemical capacitors.
URI
http://pubs.kist.re.kr/handle/201004/47675
ISSN
20462069
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE