Isoprene-derived Biofuels from Engineered Microbes

Title
Isoprene-derived Biofuels from Engineered Microbes
Authors
우한민Taek Soon Lee
Issue Date
2014-07
Publisher
Biofuels: From Microbes to Molecules
Abstract
Recently, biofuel researches have shown an increased emphasis on the advanced biofuels which are more direct replacements to petroleum-derived transportation fuels, and more compatible to the existing fuel infrastructure than the most popular biofuel, ethanol. Advanced biofuels are mostly produced from the existing hydrocarbon biosynthetic pathways such as fatty acid biosynthesis and isoprenoid biosynthesis. These hydrocarbon biosynthetic pathways generate a range of potential biofuels with characteristics suitable for gasoline, diesels, or jet-fuels, and among them, isoprenoid pathways are unique for their richness in the type of compounds they can generate. Here, we provide the insights of a class of isoprenoid compounds that can be produced in microbes by adequate microbial engineering. Subsequently, microbial cells have been constructed to produce isoprenoids using tools of pathway and host engineering, and optimized through metabolic engineering. To broaden the spectrum of microbial synthesis of target isoprenoids, synthetic biology and systems biology also have been applied to engineered microbes. Several engineered E. coli and yeast strains have been constructed and being optimized for industrial applications. Downstream-modification of isoprenoids produced from engineered microbes is necessary to satisfy the current fuel properties, and catalytic processes of target compounds must be combined with the development of isoprenoids-producing strains.
URI
http://pubs.kist.re.kr/handle/201004/47808
Appears in Collections:
KIST Publication > ETC
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE