Examination of surface phenomena of V2O5 loaded on new nanostructured TiO2 prepared by chemical vapor condensation for enhanced NH3-based selective catalytic reduction (SCR) at low temperatures

Title
Examination of surface phenomena of V2O5 loaded on new nanostructured TiO2 prepared by chemical vapor condensation for enhanced NH3-based selective catalytic reduction (SCR) at low temperatures
Authors
차우준윤성택정종수
Keywords
selective catalytic reduction (SCR); surface phenomena; nanostructured TiO2; chemical vapor condensation; low temperatures
Issue Date
2014-09
Publisher
Physical chemistry chemical physics : PCCP
Citation
VOL 16, 17900-17907
Abstract
In this article, we describe the investigation and surface characterization of a chemical vapor condensation (CVC)-TiO2 support material used in a V2O5/TiO2 catalyst for enhanced selective catalytic reduction (SCR) activity and confirm the mechanism of surface reactions. On the basis of previous studies and comparison with a commercial TiO2 catalyst, we examine four fundamental questions: first, the reason for increased surface V4+ ion concentrations; second, the origin of the increase in surface acid sites; third, a basis for synergistic influences on improvements in SCR activity; and fourth, a reason for improved catalytic activity at low reaction temperatures. In this study, we have cited the result of SCR with NH3 activity for removing NOx and analyzed data using the reported result and data from previous studies on V2O5/CVC-TiO2 for the SCR catalyst. In order to determine the properties of suitable CVC-TiO2 surfaces for efficient SCR catalysis at low temperatures, CVC-TiO2 specimens were prepared and characterized using techniques such as XRD, BET, HR-TEM, XPS, FT-IR, NH3-TPD, photoluminescence (PL) spectroscopy, H2-TPR, and cyclic voltammetry. The results obtained for the CVC-TiO2 materials were also compared with those of commercial TiO2.
URI
http://pubs.kist.re.kr/handle/201004/47945
ISSN
14639076
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE