A simple, room temperature, solid-state synthesis route for metal oxide nanostructures

Title
A simple, room temperature, solid-state synthesis route for metal oxide nanostructures
Authors
Supriya A. PatilDipak V. ShindeDo Young AhnDilip V. PatilKailas K. TehareVijaykumar V. Jadhav이중기Rajaram S. ManeNabeen K. ShresthaSung-Hwan Han
Keywords
room temperature; solid-state synthesis; metal oxide nanostructures
Issue Date
2014-09
Publisher
Journal of materials chemistry. A, Materials for energy and sustainability
Citation
VOL 2, NO 33, 13519-13526
Abstract
In this work, we demonstrate an extremely simple but highly effective strategy for the synthesis of various functional metal oxides (MOs) such as ZnO, In2O3, Bi2O3, and SnO2 nanoparticles with various distinct shapes at room temperature via a solid-state reaction method. The method involves only mixing and stirring of the corresponding metal salt and NaOH together in the solid phase, which yields highly crystalline metal oxides within 5–10 min of reaction time. The obtained paste can be directly doctor-bladed onto a variety of substrates for photoelectrochemical applications. The crystal structure and surface composition of the MOs are obtained by X-ray diffraction patterns, energy dispersive analysis and X-ray photoelectron spectroscopy, respectively. The surface morphology is confirmed from the scanning electron microscopy surface photo-images. The surface area and pore size distribution are studied by the N2 adsorption method. As a proof-of-concept demonstration for the application, ZnO nanoplate structures are envisaged in DSSCs as photoanodes, which enables us to obtain excellent photovoltaic properties with a power conversion efficiency of 5%. The proposed method does not require a sophisticated instrumental setup or harsh conditions, and the method is easily scalable. Hence, it can be applied for the cost-effective and large-scale production of MO nanoparticles with high crystallinity.
URI
http://pubs.kist.re.kr/handle/201004/47968
ISSN
20507488
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE