Embedding Covalency into Metal Catalysts for Efficient Electrochemical Conversion of CO2

Title
Embedding Covalency into Metal Catalysts for Efficient Electrochemical Conversion of CO2
Authors
Hyung-Kyu LimHyeyoung ShinWilliam A. Goddard황윤정민병권Hyungjun Kim
Keywords
CO2 reduction; electrochemical; metal catalysts
Issue Date
2014-08
Publisher
Journal of the American Chemical Society
Citation
VOL 136, NO 32, 11355-11361
Abstract
CO2 conversion is an essential technology to develop a sustainable carbon economy for the present and the future. Many studies have focused extensively on the electrochemical conversion of CO2 into various useful chemicals. However, there is not yet a solution of sufficiently high enough efficiency and stability to demonstrate practical applicability. In this work, we use first-principles-based highthroughput screening to propose silver-based catalysts for efficient electrochemical reduction of CO2 to CO while decreasing the overpotential by 0.4−0.5 V. We discovered the covalency-aided electrochemical reaction (CAER) mechanism in which p-block dopants have a major effect on the modulating reaction energetics by imposing partial covalency into the metal catalysts, thereby enhancing their catalytic activity well beyond modulations arising from d-block dopants. In particular, sulfur or arsenic doping can effectively minimize the overpotential with good structural and electrochemical stability. We ex ect this work to provide useful insights to guide the development of a feasible strategy to overcome the limitations of current technology for electrochemical CO2 conversion.
URI
http://pubs.kist.re.kr/handle/201004/48017
ISSN
00027863
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE