Fibroblast-derived matrix (FDM) as a novel vascular endothelial growth factor delivery platform

Fibroblast-derived matrix (FDM) as a novel vascular endothelial growth factor delivery platform
두 핑황민태노용권라메쉬김인걸배순언박귀덕
angiogenesis; fibroblast-derived matrix (FDM); human umbilical vein endothelial cells (HUVECs); vascular endothelial growth factor (VEGF); heparin; alginate capsule (AC)
Issue Date
Journal of controlled release
VOL 194, 122-129
Vascular endothelial growth factor (VEGF) is one of the most important signaling cues during angiogenesis. Since many delivery systems of VEGF have been reported, the presentation of VEGF using a more physiologically relevant extracellular matrix (ECM), however, has yet to be thoroughly examined. In this study, we propose that fibroblast-derived extracellular matrix (FDM) is a novel platform for angiogenic growth factor delivery and that FDM-mediated VEGF delivery can result in an advanced angiogenic response. The FDMs, activated by EDC/NHS chemistry, were loaded with varying amounts of heparin. Different doses of VEGF were subsequently immobilized onto the heparin-grafted FDM (hep-FDM); 19.6 ± 0.6, 39.2 ± 3.2, and 54.8 ± 8.9 ng of VEGF were tethered using 100, 300, and 500 ng of initial VEGF, respectively. VEGF-tethered FDM was found chemoattractive and VEGF dose-dependent in triggering human umbilical vein endothelial cells (ECs) migration in vitro. When hep-FDM-bound VEGF (H-F/V) was encapsulated into alginate capsules (A/H-F/V) and subjected to release test for 28 days, it exhibited a significantly reduced burst release at early time point compared to that of A/V. The cell proliferation results indicated a substantially extended temporal effect of A/H-F/V on EC proliferation compared to those treated with soluble VEGF. For a further study, A/H-F/V was transplanted subcutaneously into ICR mice for up to 4 weeks to assess its in vivo effect on angiogenesis; VEGF delivered by hep-FDM was more competitive in promoting blood vessel ingrowth and maturation compared to other groups. Taken together, this study successfully engineered an FDM-mediated VEGF delivery system, documented its capacity to convey VEGF in a sustained manner, and demonstrated the positive effects of angiogenic activity in vivo as well as in vitro.
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
RIS (EndNote)
XLS (Excel)


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.