Growth of Large-Scale and Thickness-Modulated MoS2 Nanosheets

Title
Growth of Large-Scale and Thickness-Modulated MoS2 Nanosheets
Authors
Nitin ChoudharyJuhong Park황준연Wonbong Choi
Keywords
PVD-CVD; 2D materials; Interface; field effect transistors; MoS2; thin films
Issue Date
2014-12
Publisher
ACS Applied Materials & Interfaces
Citation
VOL 6, NO 23, 21215-21222
Abstract
Two-dimensional MoS2 is a promising material for next-generation electronic and optoelectronic devices due to its unique electrical and optical properties including the band gap modulation with film thickness. Although MoS2 has shown excellent properties, wafer-scale production with layer control from single to few layers has yet to be demonstrated. The present study explored the large-scale and thickness-modulated growth of atomically thin MoS2 on Si/SiO2 substrates using a two-step sputtering–CVD method. Our process exhibited wafer-scale fabrication and successful thickness modulation of MoS2 layers from monolayer (0.72 nm) to multilayer (12.69 nm) with high uniformity. Electrical measurements on MoS2 field effect transistors (FETs) revealed a p-type semiconductor behavior with much higher field effect mobility and current on/off ratio as compared to previously reported CVD grown MoS2-FETs and amorphous silicon (a-Si) thin film transistors. Our results show that sputter–CVD is a viable method to synthesize large-area, high-quality, and layer-controlled MoS2 that can be adapted in conventional Si-based microfabrication technology and future flexible, high-temperature, and radiation hard electronics/optoelectronics.
URI
http://pubs.kist.re.kr/handle/201004/49201
ISSN
19448244
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE