Gaussian Process Learning and Interpolation of Gait Motion for Rehabilitation Robots

Title
Gaussian Process Learning and Interpolation of Gait Motion for Rehabilitation Robots
Authors
전창묵김승종홍지수박종우
Issue Date
2015-02
Publisher
International Conference on Automation, Robotics and Applications
Citation
, 1-6
Abstract
We present an alternative approach to generate gait motion at arbitrary speed for gait rehabilitation robots. The methodology utilizes Gaussian process dynamical model (GPDM), which is a nonlinear dimensionality reduction technique. GPDM consists of a dynamics in low-dimensional latent space and a mapping from the space to configuration space, and GPDM learning results in the low-dimensional representation of training data and parameters for the dynamics and mapping. We use second-order Markov process dynamics model, and hence given a pair of initial points, the dynamics generates a latent trajectory at arbitrary speed. We use linear regression to obtain the initial points. Mapping from the latent to configuration spaces constructs trajectories of walking motion. We verify the algorithm with motion capture data from 50 healthy subjects, who walked on a treadmill at 1, 2, and 3 km/h. We show examples and compare the original and interpolated trajectories to prove the efficacy of the algorithm.
URI
http://pubs.kist.re.kr/handle/201004/49381
Appears in Collections:
KIST Publication > Conference Paper
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE