In Situ Transformation of Hydrogen-Evolving CoP Nanoparticles: Toward Efficient Oxygen Evolution Catalysts Bearing Dispersed Morphologies with Co-oxo/hydroxo Molecular Units

Title
In Situ Transformation of Hydrogen-Evolving CoP Nanoparticles: Toward Efficient Oxygen Evolution Catalysts Bearing Dispersed Morphologies with Co-oxo/hydroxo Molecular Units
Authors
류재윤정남기장종현김형준유성종
Keywords
water splitting; oxygen evolution; hydrogen evolution; cobalt phosphide nanoparticle
Issue Date
2015-05
Publisher
ACS catalysis
Citation
VOL 5, 4066-4074
Abstract
Reported herein is elucidation of a novel Co-based oxygen evolution catalyst generated in situ from cobalt phosphide (CoP) nanoparticles. The present CoP nanoparticles, efficient alkaline hydrogen-evolving materials at the cathode, are revealed to experience unique metamorphosis upon anodic potential cycling in an alkaline electrolyte, engendering efficient and robust catalytic environments toward the oxygen evolution reaction (OER). Our extensive ex situ characterization shows that the transformed catalyst bears porous and nanoweb-like dispersed morphologies along with unique microscopic environments mainly consisting of discrete cobalt-oxo/hydroxo molecular units within a phosphate-enriched amorphous network. Outstanding OER efficiency is achievable with the activated catalyst, which is favorably comparable to even a precious iridium catalyst. A more remarkable feature is its outstanding long-term stability, superior to iridium and conventional cobalt oxide-based materials. Twelve-hour bulk electrolysis continuously operating at high current density is completely tolerable with the present catalyst.
URI
http://pubs.kist.re.kr/handle/201004/49864
ISSN
21555435
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE