Using Real-Time Electron Microscopy To Explore the Effects of Transition-Metal Composition on the Local Thermal Stability in Charged LixNiyMnzCo1-y-zO2 Cathode Materials

Title
Using Real-Time Electron Microscopy To Explore the Effects of Transition-Metal Composition on the Local Thermal Stability in Charged LixNiyMnzCo1-y-zO2 Cathode Materials
Authors
황수연김승민박성민김세영조병원정경윤이정용Eric A. Stach장원영
Keywords
thermal stability; electron microscopy; cathode; transition metal
Issue Date
2015-05
Publisher
Chemistry of materials
Citation
VOL 27, 3927-3935
Abstract
In this work, we use in situ transmission electron microscopy (TEM) to investigate the thermal decomposition that occurs at the surface of charged LixNiyMnzCo1−y−zO2 (NMC) cathode materials of different composition (with y, z= 0.8, 0.1, and 0.6, 0.2, and 0.4,and 0.3), after they have been charged to their practical upper limit voltage (4.3 V). By heating these materials inside the TEM, we are able to directly characterize near surface changes in both their electronic structure (using electron energy loss spectroscopy) and crystal structure and morphology (using electron diffraction and brightfield imaging). The most Ni-rich material (y, z = 0.8, 0.1) is found to be thermally unstable at significantly lower temperatures than the other compositionsthis is manifested by changes in both the electronic structure and the onset of phase transitions at temperatures as low as 100 °C. Electron energy loss spectroscopy indicates that (i) the thermally induced reduction of Ni ions drives these changes, and (ii) this is exacerbated by the presence of an additional redox reaction that occurs at 4.2 V in the y, z = 0.8, 0.1 material. Exploration of individual particles shows that there are substantial variations in the onset temperatures and overall extent of these changes. Of the compositions studied, the composition of y, z = 0.6, 0.2 has the optimal combination of high energy density and reasonable thermal stability. The observations herein demonstrate that real-time electron microscopy provide direct insight into the changes that occur in cathode materials with temperature, allowing optimization of different alloy concentrations to maximize overall performance.
URI
http://pubs.kist.re.kr/handle/201004/49869
ISSN
08974756
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE