Sea-Urchin-Inspired 3D Crumpled Graphene Balls Using Simultaneous Etching and Reduction Process for High-Density Capacitive Energy Storage

Title
Sea-Urchin-Inspired 3D Crumpled Graphene Balls Using Simultaneous Etching and Reduction Process for High-Density Capacitive Energy Storage
Authors
이장열이광훈김영진하정숙이상수손정곤
Keywords
sea urchin; graphene; supercapacitor
Issue Date
2015-06
Publisher
Advanced functional materials
Citation
VOL 25, 3606-3614
Abstract
A crumpled confi guration of graphene is desirable for preventing irreversible stacking between individual nanosheets, which can be a major hurdle toward its widespread application. Herein a sea-urchin-shaped template approach is introduced for fabricating highly crumpled graphene balls in bulk quantities with a simple process. Simultaneous chemical etching and reduction process of graphene oxide (GO)-encapsulated iron oxide particles results in dissolution of the core template with spiky morphology and conversion of the outer GO layers into reduced GO layers with increased hydrophobicity which remain in contact with the spiky surface of the template. After completely etching, the outer graphene layers are fully compressed into the crumpled form along with decrease in total volume by etching. The crumpled balls exhibit signifi cantly larger surface area and good water-dispersion stability than those of stacked reduced GO or other crumple approaches, even though they also show comparable electrical conductivity. Furthermore, they are easily assembled into 3D macroporous networks without any binders through typical processes such as solvent casting or compression molding. The graphene networks with less pore volume still have the crumpled morphology without sacrifi cing the properties regardless of the assembly processes, producing a promising active electrode material with high gravimetric and volumetric energy density for capacitive energy storage.
URI
http://pubs.kist.re.kr/handle/201004/49874
ISSN
1616301X
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE