On the improvement of photoelectrochemical performance and finite element analysis of reduced graphene oxide?BiVO 4 composite electrodes

Title
On the improvement of photoelectrochemical performance and finite element analysis of reduced graphene oxide?BiVO 4 composite electrodes
Authors
박현서하형욱Rodney S RuoffAllen J Bard
Keywords
Photoelectrochemistry; Photocatalyst; Water splitting; Finite element analysis; Graphene; Bismuth vanadate
Issue Date
2014-03
Publisher
Journal of electroanalytical chemistry
Citation
VOL 716, 8-15
Abstract
Incorporation of thermally reduced graphene oxide (RG-O) into the metal oxide semiconductor BiVO4 improves its photoactivity by about three times for sulfite oxidation. The enhancement of photoactivity is attributed to reduced electron–hole recombination of BiVO4 using the RG-O as a conductive matrix in the composite photocatalyst. Photoelectrochemical behavior of the BiVO4 and RG-O/BiVO4 composite electrodes were simulated using finite element analysis to obtain the carrier mobility and its lifetime in the photoelectrodes. In contrast with sulfite oxidation, the improvement of photocurrent for water oxidationof RG-O/BiVO4 composite electrode was not significant because of the slower kinetics for water oxidation. To address the kinetic limitations, platinum (Pt) as an effective electrocatalyst was photodeposited on the RG-O/BiVO4 electrode. Addition of the Pt significantly improved water oxidation photocurrent of the Pt/RG-O/BiVO4 electrode. RG-O/W–Mo-doped BiVO4 composite electrodes were also prepared to investigate a further enhancement of photoactivity of W–Mo-doped BiVO4. The behavior obtained from RG-O/W–Mo-BiVO4 and RG-O/BiVO4 electrodes provides a valuable insight into the role of RG-O as a conducting additive and the role of W and Mo as dopants into BiVO4.
URI
http://pubs.kist.re.kr/handle/201004/50098
ISSN
15726657
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE