Rationally engineered surface properties of carbon nanofibers on the enhanced supercapacitive performance of binary metal oxide nanosheets

Title
Rationally engineered surface properties of carbon nanofibers on the enhanced supercapacitive performance of binary metal oxide nanosheets
Authors
Ji Hoon KimChang Hyo KimHyeonseok YoonJe Sung Youm정용채Christopher E. BunkerYoong Ahm KimKap Seung Yang
Keywords
carbon fiber; supercapacitive
Issue Date
2015-10
Publisher
Journal of materials chemistry. A, Materials for energy and sustainability
Citation
VOL 3, NO 39, 19867-19872
Abstract
The hybridization of an electrochemically active metal oxide with electrically conductive carbon nanofibers (CNFs) has been utilized as a solution to overcome the energy density limitation of carbon-based supercapacitors as well as the poor cyclic stability of metal oxides. Herein, we have demonstrated the growth of binary metal oxide nanosheets on the engineered surface of CNFs to fully exploit their electrochemical activity. Metal oxide nanosheets were observed to grow vertically from the surface of CNFs. The high structural toughness of the CNF-metal oxide composite under strong sonication indicated strong interfacial binding strength between the metal oxide and the CNFs. The rationally designed porous CNFs presented a high specific surface area and showed high capacity for adsorbing metal ions, where the active edge sites acted as anchoring sites for the nucleation of metal oxides, thereby leading to the formation of a well dispersed and thin layer structure of binary metal oxide nanosheets. Excellent electrochemical performance (e.g., specific capacitance of 2894.70 F g(-1) and energy density of 403.28 W h kg(-1)) was observed for these binary metal oxide nanosheets, which can be attributed to the large increase in the accessible surface area of the electrochemically active metal oxide nanosheets due to their homogeneous distribution on porous CNFs, as well as the efficient charge transfer from the metal oxide to the CNFs facilitated the improvement in the performance.
URI
http://pubs.kist.re.kr/handle/201004/50385
ISSN
20507488
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE