Biolighted Nanotorch Capable of Systemic Self-Delivery and Diagnostic Imaging

Biolighted Nanotorch Capable of Systemic Self-Delivery and Diagnostic Imaging
Ajay Singh서영훈Chang-Keun LimJoonseok KohWoo-Dong Jang권익찬김세훈
chemiluminescence; diagnosis; in vivo imaging; nanoprobes; systemic delivery
Issue Date
ACS Nano
VOL 9, NO 10, 9909-9911
Sensitive imaging of inflammation with a background-free chemiluminescence (CL) signal has great potential as a clinically relevant way of early diagnosis for various inflammatory diseases. However, to date, its feasibility has been limitedly demonstrated in vivo with locally induced inflammation models byin situ injection of CL probes. To enable systemic disease targeting and imaging by intravenous administration of CL probes, hurdles needto be overcome such as weak CL emission, short glowing duration, or inability of long blood circulation. Here, we report a CL nanoprobe (BioNT) that surmounted such limitations to perform precise identification of inflammation by systemic self-delivery to the pathological tissues. This BioNT probe was engineered by physical nanointegration of multiple kinds of functional molecules into the ultrafine nanoreactor structure (∼15 nm in size) that combines solid-state fluorescence-induced enhanced peroxalate CL and built-in machinery to control the intraparticle kinetics of CL reaction. Upon intravenous injection into a normal mouse, BioNT showed facile blood circulation and generated a self-lighted strong CL torchlight throughout the whole body owing to the tiny colloidal structure with an antifouling surface as well as high CL sensitivity toward endogenous biological hydrogen peroxide (H2O2). In mouse models of local and systemic inflammations, blood-injected BioNT visualized precise locations of inflamedtissues with dual selectivity (selective probe accumulation and selective CL reation with H2O2 overproduced by inflammation). Even a tumor model that demands a long blood circulation time for targeting (>3 h) could be accurately identified by persistent signaling from the kinetics-tailored BioNT with a 65-fold slowed CL decay rate. We also show that BioNT exhibits no apparent toxicity, thus holding potential for high-contrast diagnostic imaging
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
RIS (EndNote)
XLS (Excel)


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.