Structural consequences of aglycosylated IgG Fc variants evolved for FcγRI binding

Title
Structural consequences of aglycosylated IgG Fc variants evolved for FcγRI binding
Authors
주만석나정현유연규김재열정철현정상택
Keywords
Antibody engineering; Aglycosylated antibody; Effector function; Single-molecule analysis; Fo?rster resonance energy transfer; Alternative laser excitation
Issue Date
2015-10
Publisher
Molecular immunology
Citation
VOL 67, NO 2, 350-356
Abstract
In contrast to the glycosylated IgG antibodies secreted by human plasma cells, the aglycosylated IgG antibodies produced by bacteria are unable to bind Fc gamma Rs expressed on the surface of immune effector cells and cannot trigger immune effector functions. To avoid glycan heterogeneity problems, elicit novel effector functions, and produce therapeutic antibodies with effector function using a simple bacterial expression system, Fc gamma RI-specific Fc-engineered aglycosylated antibodies, Fc11 (E382V) and Fc (E382V/M428I), containing mutations in the CH3 region, were isolated in a previous study. To elucidate the relationship between Fc gamma RI binding affinity and the structural dynamics of the upper CH2 region of Fc induced by the CH3 mutations, the conformational variation of Fc variants was observed by single-molecule Forster resonance energy transfer (FRET) analysis using alternating-laser excitation (ALEX). In sharp contrast to wild-type Fc, which exhibits a highly dynamic upper CH2 region, the mutations in the CH3 region significantly stabilized the upper CH2 region. The results indicate that conformational plasticity, as well as the openness of the upper CH2 region, is critical for Fc gamma R binding and therapeutic effector functions of IgG antibodies
URI
http://pubs.kist.re.kr/handle/201004/50595
ISSN
01615890
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE