Electrical impedance controls mechanical sensing in ionic polymer metal composites

Title
Electrical impedance controls mechanical sensing in ionic polymer metal composites
Authors
차영수Filippo CelliniMaurizio Porfiri
Issue Date
2013-12
Publisher
Physical review E
Citation
VOL 88, NO 6, 062603
Abstract
Ionic polymer metal composites (IPMCs) are a class of soft electroactive materials that are recently finding extensive application as mechanical sensors and energy harvesters in liquids. In their most fundamental form, IPMCs are composed of a hydrated ionomeric membrane that is sandwiched between two electrochemically depositedmetal electrodes. Ionomer swelling, counterion diffusion, and the formation of electric double layers are some of the physical phenomena underpinning energy transduction in IPMCs; however, a thorough understanding of the relative influence of such phenomena is yet to be established. Here, we propose a physics-based modeling framework, based on the Poisson-Nernst-Planck system, to describe IPMC chemoelectrical response to an imposed time-varying flexural deformation. We utilize the method of matched asymptotic expansions to compute a closed-form solution for the electric potential and counterion concentration in the IPMC. The model predicts that IPMC sensing is independent of the time rate of deformation and linearly correlated to the mechanical curvature, with a coefficient of proportionality that is a function of the ionomer thickness and the temperature. Thus, our results demonstrate that the characterization of IPMC electrical impedance suffices to identify all the parameters that are relevant to sensing, in contrast with the current state of knowledge. Theoretical results are validated through experiments on patterned in-house fabricated IPMC samples that are subject to time-varying flexural deformations
URI
http://pubs.kist.re.kr/handle/201004/50982
ISSN
15393755
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE