Formation of III-V-On-Insulator Structures on Si by Direct Wafer Bonding

Formation of III-V-On-Insulator Structures on Si by Direct Wafer Bonding
Masafumi YokoyamaRyo IidaYuki Ikku김상현Hideki TakagiTetsuji YasudaHisashi YamadaOsamu IchikawaNoboru FukuharaMasahiko HataMitsuru TakenakaShinichi Takagi
Issue Date
Semiconductor science and technology
VOL 28
We have studied the formation of III–V-compound-semiconductors-on-insulator (III–V-OI) structures with thin buried oxide (BOX) layers on Si wafers by using developed direct wafer bonding (DWB). In order to realize III–V-OI MOSFETs with ultrathin body and extremely thin body (ETB) InGaAs-OI channel layers and ultrathin BOX layers, we have developed an electron-cyclotron resonance (ECR) O2 plasma-assisted DWB process with ECR sputtered SiO2 BOX layers and a DWB process based on atomic-layer-deposition Al2O3 (ALD-Al2O3) BOX layers. It is essential to suppress micro-void generation during wafer bonding process to achieve excellent wafer bonding. We have found that major causes of micro-void generation in DWB processes with ECR-SiO2 and ALD-Al2O3 BOX layers are desorption of Ar and H2O gas, respectively. In order to suppress micro-void generation in the ECR-SiO2 BOX layers, it is effective to introduce the outgas process before bonding wafers. On the other hand, it is a possible solution for suppressing micro-void generation in the ALD-Al2O3 BOX layers to increase the deposition temperature of the ALD-Al2O3 BOX layers. It is also another possible solution to deposit ALD-Al2O3 BOX layers on thermally oxidized SiO2 layers, which can absorb the desorption gas from ALD-Al2O3 BOX layers.
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
RIS (EndNote)
XLS (Excel)


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.