Interface control between amorphous silicon and polymer subcells in tandem solar cells using graphene interlayer

Title
Interface control between amorphous silicon and polymer subcells in tandem solar cells using graphene interlayer
Authors
김철기김태희한승희김일원이상수손해정김희숙
Issue Date
2016-01
Publisher
Science of Advanced Materials
Citation
VOL 8, 218-223
Abstract
As commercial interest in energy-harvesting devices has increased, tandem solar cells composed of two or more stacked photoactive layers have attracted interest in the field of solar cell technology. In hybrid tandem solar cells connected by an internal junction, interface control between subcells is very important for high performance. We report an organic–inorganic hybrid tandem solar cell containing a reduced graphene oxide (rGO) interlayer between an inorganic amorphous silicon subcell and an organic photovoltaic cell (OPV). The transparency and hydrophilicity of the rGO thin layer spray-coated onto the amorphous silicon photovoltaic cell improved compatibility with the upper poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) layer of the OPV subcell, thus decreasing the series resistance of the hybrid tandem cell. As a result, charge recombination occurred more efficiently between electrons and holes generated in the amorphous silicon front cell and the OPV back cell, respectively, and the photovoltaic performance of the tandem solar cell was enhanced. These results demonstrate that graphene is a good material for the interlayer component of organic–inorganic hybrid tandem solar cells.
URI
http://pubs.kist.re.kr/handle/201004/58462
ISSN
19472935
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE