A Chemical Controller of SNARE-Driven Membrane Fusion That Primes Vesicles for Ca(2+)-Triggered Millisecond Exocytosis

Title
A Chemical Controller of SNARE-Driven Membrane Fusion That Primes Vesicles for Ca(2+)-Triggered Millisecond Exocytosis
Authors
정철현양유수허바울한규영공병재신종혁정영훈신재일신연균하택집권대혁
Issue Date
2016-04
Publisher
Journal of the American Chemical Society
Citation
VOL 138, NO 13, 4512-4521
Abstract
Membrane fusion is mediated by the SNARE complex which is formed through a zippering process. Here, we developed a chemical controller for the progress of membrane fusion. A hemifusion state was arrested by a polyphenol myricetin which binds to the SNARE complex. The arrest of membrane fusion was rescued by an enzyme laccase that removes myricetin from the SNARE complex. The rescued hemifusion state was metastable and long-lived with a decay constant of 39 min. This membrane fusion controller was applied to delineate how Ca2+ stimulates fusion-pore formation in a millisecond time scale. We found, using a single-vesicle fusion assay, that such myricetin-primed vesicles with synaptotagmin 1 respond synchronously to physiological concentrations of Ca2+. When 10 μM Ca2+ was added to the hemifused vesicles, the majority of vesicles rapidly advanced to fusion pores with a time constant of 16.2 ms. Thus, the results demonstrate that a minimal exocytotic membrane fusion machinery composed of SNAREs and synaptotagmin 1 is capable of driving membrane fusion in a millisecond time scale when a proper vesicle priming is established. The chemical controller of SNARE-driven membrane fusion should serve as a versatile tool for investigating the differential roles of various synaptic proteins in discrete fusion steps.
URI
http://pubs.kist.re.kr/handle/201004/59164
ISSN
00027863
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE