Molecular hydrogen production from wastewater electrolysis cell with multi-junction BiOx/TiO2 anode and stainless steel cathode: current and energy efficiency

Title
Molecular hydrogen production from wastewater electrolysis cell with multi-junction BiOx/TiO2 anode and stainless steel cathode: current and energy efficiency
Authors
조강우Michael R. Hoffmann
Keywords
Hydrogen; Wastewater; Electrolysis; BiOx/TiO2 anode; Stainless steel cathode
Issue Date
2017-03
Publisher
Applied catalysis B, Environmental
Citation
VOL 202-682
Abstract
Electrochemical hydrogen evolution reaction (HER) has been recognized as a viable approach to generate a clean energy fuel. However, substantial technical breakthroughs are needed to reduce the costs for electricity and chemical reagents. In this study, we explore a specific wastewater electrolysis cell (WEC) as an alternative of decentralized H2 production coupled with onsite water treatment. A prototypical WEC consists of a multi-junction semiconductor anode and a stainless steel cathode paired in single compartment cell. A distinct layer of BiOx/TiO2 on anode surface had relatively low crystallinity that was shown to be beneficial for higher oxide formation and O2 evolution. The over-potential and Tafel slope of the BiOx/TiO2 anode were determined to be 0.32 V and 120 mV decade− 1. In a single compartment WEC with a NaCl electrolyte ([Cl− ] ≤50 mM), the current density (j) ranged up to 500 A m− 2 at cell voltages less than 6 V, while the current efficiency (CE) for free chlorine (FC) evolution showed maximum value near 0.3. The CE and energy efficiency (EE) for the HER were assessed using NaCl solutions (50 mM with or without 2.5 g L− 1 urea) and real wastewater with variable compositions ([Cl− ]: 6– 33 mM, [chemical oxygen demand]: 60– 790 mg L− 1). The ohmic resistance of wastewater electrolyte rules out the usage of membrane separation, resulting in side reactions such as reduction of O2 whose CE values monotonically decreased with an increasing j under the diffusion controlled regime. Chloride ions reduce the electron consumption during O2 reduction, while elevated levels of FC significantly lower the CE for the HER. The combined presence of oxidizable organic compounds and Cl− enhance the CE for the HER as long as the concentration of organics is enough to quench FC to maintain a pseudo steady-state concentration. The highest CE (0.8) and EE (0.23) for HER were o
URI
http://pubs.kist.re.kr/handle/201004/65089
ISSN
0926-3373
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE