Tandem Architecture of Perovskite and Cu(In,Ga)(S,Se)2 Created by Solution Processes for Solar Cells

Title
Tandem Architecture of Perovskite and Cu(In,Ga)(S,Se)2 Created by Solution Processes for Solar Cells
Authors
민병권황윤정이민오박세진전용석
Keywords
tandem; CIGS; Perovskite; solution process
Issue Date
2016-12
Publisher
Advanced optical materials
Citation
VOL 4, NO 12-2108
Abstract
Integrating tandem solar cell architectures into devices can improve their power conversion efficiency (PCE) by overcoming the limited incident light absorption range of a single absorber and reducing the thermalization loss. Here, fabricated tandem solar cells are successfully fabricated employing different absorber materials, in this case perovskite and Cu(In,Ga)(S,Se)2 (CIGS) as top and bottom cells, respectively. For cost effectiveness most tandem device manufacturing processes are achieved by solution-based methods, which even provide the electrode layers. Using such a process to create a tandem device, a PCE of 8.34% for the semitransparent perovskite top solar cell and 2.48% for the CIGS bottom solar cell is obtained, resulting in an overall efficiency of 10.82% for the four-terminal tandem device. This result highlights the potential of this solution-based tandem configuration as a way to facilitate the creation of simple and inexpensive efficient light-utilizing solar cell devices.
URI
http://pubs.kist.re.kr/handle/201004/65236
ISSN
2195-1071
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE