Mussel Adhesion-Inspired Reverse Transfection Platform Enhances Osteogenic Differentiation and Bone Formation of Human Adipose-Derived Stem Cells

Title
Mussel Adhesion-Inspired Reverse Transfection Platform Enhances Osteogenic Differentiation and Bone Formation of Human Adipose-Derived Stem Cells
Authors
전호정한형섭신지수조정호진윤희양기석이종성박현지이진규신흥수조승우
Keywords
mussel adhesion; reverse transfection; osteogenic; bone formation; human adipose derived stem cell
Issue Date
2016-12
Publisher
Small
Citation
VOL 12, NO 45-6278
Abstract
Using small interfering RNA (siRNA) to regulate gene expression is an emerging strategy for stem cell manipulation to improve stem cell therapy. However, conventional methods of siRNA delivery into stem cells based on solution-mediated transfection are limited due to low transfection efficiency and insufficient duration of cell-siRNA contact during lengthy culturing protocols. To overcome these limitations, a bio-inspired polymer-mediated reverse transfection system is developed consisting of implantable poly(lactic-co-glycolic acid) (PLGA) scaffolds functionalized with siRNA-lipidoid nanoparticle (sLNP) complexes via polydopamine (pDA) coating. Immobilized sLNP complexes are stably maintained without any loss of siRNA on the pDA-coated scaffolds for 2 weeks, likely due to the formation of strong covalent bonds between amine groups of sLNP and catechol group of pDA. siRNA reverse transfection with the pDA-sLNP-PLGA system does not exhibit cytotoxicity and induces efficient silencing of an osteogenesis inhibitor gene in human adipose-derived stem cells (hADSCs), resulting in enhanced osteogenic differentiation of hADSCs. Finally, hADSCs osteogenically committed on the pDA-sLNP-PLGA scaffolds enhanced bone formation in a mouse model of critical-sized bone defect. Therefore, the bio-inspired reverse transfection system can provide an all-in-one platform for genetic modification, differentiation, and transplantation of stem cells, simultaneously enabling both stem cell manipulation and tissue engineering.
URI
http://pubs.kist.re.kr/handle/201004/65315
ISSN
1613-6810
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE