Optogenetic Modulation of Urinary Bladder Contraction for Lower Urinary Tract Dysfunction

Title
Optogenetic Modulation of Urinary Bladder Contraction for Lower Urinary Tract Dysfunction
Authors
신현준홍진기박재홍장자윤이규성강동묵서준교Jieun An
Keywords
optogenetics; Urinary bladder; lower urinary tract dysfuction
Issue Date
2017-01
Publisher
Scientific Reports
Citation
VOL 7-40872-13
Abstract
As current clinical approaches for lower urinary tract (LUT) dysfunction such as pharmacological and electrical stimulation treatments lack target specificity, thus resulting in suboptimal outcomes with various side effects, a better treatment modality with spatial and temporal target-specificity is necessary. In this study, we delivered optogenetic membrane proteins, such as channelrhodopsin-2 (ChR2) and halorhodopsin (NpHR), to bladder smooth muscle cells (SMCs) of mice using either the Creloxp transgenic system or a viral transfection method. The results showed that depolarizing ChR2-SMCs with blue light induced bladder contraction, whereas hyperpolarizing NpHR-SMCs with yellow light suppressed PGE2-induced overactive contraction. We also confirmed that optogenetic contraction of bladder smooth muscles in this study is not neurogenic, but solely myogenic, and that optogenetic light stimulation can modulate the urination in vivo. This study thus demonstrated the utility of optogenetic modulation of smooth muscle as a means to actively control the urinary bladder contraction with spatial and temporal accuracy. These features would increase the efficacy of bladder control in LUT dysfunctions without the side effects of conventional clinical therapies.
URI
http://pubs.kist.re.kr/handle/201004/65955
ISSN
2045-2322
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE