Versatile approaches to tune a nanocolumnar structure for optimized electrical properties of In2O3 based gas sensor

Title
Versatile approaches to tune a nanocolumnar structure for optimized electrical properties of In2O3 based gas sensor
Authors
윤석진김진상강종윤김상태심영석한수덕노명섭송영근이광재이해룡남산
Keywords
Indium oxides; Gas sensor; Glancing angle deposition; Nanocolumnar thin films; Internet of things
Issue Date
2017-09
Publisher
Sensors and actuators. B, Chemical
Citation
VOL 248-901
Abstract
In this study, we demonstrate tuning of electrical properties and sensing responses of In2O3 nanocolumnar structure via varying glancing angle (GLAD) deposition conditions by e-beam evaporator. The varied deposition conditions include glancing angle, vacuum level and deposition rate. The electrical property of In2O3 nanostructured thin films, demonstrated by the base resistance, change up to 3 orders of magnitude from 110 Ω to 103104 Ω depending on the porosity of nanocolumnar structure and oxygen vacancy concentration. This variation in electrical property transfers to the tuning of gas sensing response, and we achieve tuning the same material (In2O3) based gas sensors to better perform for specific type of gases (either oxidizing or reducing). The highest responses achieved in this work reached up to 176 for oxidizing gases (5 ppm NO2, Rgas/Rair) and 929 for reducing gases (50 ppm C2H5OH, Rair/Rgas). Therefore, we demonstrate that gas sensors can be optimized for specific type of target gases with the same material, via simple control of deposition conditions. Along with the high reproduciblility and sensitivity, this puts the nanocolumnar thin film based gas sensors by GLAD with huge potential for further miniaturization and mass production, suitable for the upcoming IoT era.
URI
http://pubs.kist.re.kr/handle/201004/66011
ISSN
0925-4005
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE