Surface engineering of the electron collecting layers for high performance organic photovoltaic cells

Title
Surface engineering of the electron collecting layers for high performance organic photovoltaic cells
Authors
최원국황도경임주원심재원정경화김동하
Keywords
Surface engineering; Electron collecting layers; Organic solar cell
Issue Date
2017-11
Publisher
Current applied physics
Citation
VOL 17, NO 11-1482
Abstract
Surface engineering of the electron collecting layers (ECLs) is a straightforward and practical strategy to develop high performance inverted structure organic solar cells (OSCs). Here, we systematically investigate four different types of surface modified ECLs to implement high performance low-energy band gap poly[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-bA]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]-thiophenediyl] (PTB7) and [6,6]-phenyl-C70-butyric acid methyl ester (PC70BM) based inverted OSCs: (1) single PEIE, (2) ZnO:PEIE mixture (1:1 vol ratio), (3) PEIE/ZnO bilayer, and (4) ZnO/PEIE bilayer. OSCs with the ZnO/PEIE ECL show the highest power conversion efficiency (PCE) value of 8.61% while all the other devices exhibit PCE values of less than 7.80%. The excellent surface coverage as well as proper band alignment of the ZnO/PEIE bilayer leads to the highest device performance.
URI
http://pubs.kist.re.kr/handle/201004/66187
ISSN
1567-1739
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE