Reliable Multistate Data Storage with Low Power Consumption by Selective Oxidation of Pyramid-Structured Resistive Memory

Title
Reliable Multistate Data Storage with Low Power Consumption by Selective Oxidation of Pyramid-Structured Resistive Memory
Authors
이상수박종혁박현서김영진최한형강문성신근영
Keywords
multilevel resistive memory; pyramidal electrode; tip-enhanced electric field; surface energy; conductive filament; resistive switching
Issue Date
2017-11
Publisher
ACS Applied Materials & Interfaces
Citation
VOL 9, NO 44-38650
Abstract
Multilevel data storage using resistive random access memory (RRAM) has attracted significant attention for addressing the challenges associated with the rapid advances in information technologies. However, it is still difficult to secure reliable multilevel resistive switching of RRAM due to the stochastic and multiple formation of conductive filaments (CFs). Herein, we demonstrate that a single CF, derived from selective oxidation by a structured Cu active electrode, can solve the reliability issue. High-quality pyramidal Cu electrodes with a sharp tip are prepared via the template-stripping method. Morphology-dependent surface energy facilitates the oxidation of Cu atoms at the tip rather than in other regions, and the tipenhanced electric fields can accelerate the transport of the generated Cu ions. As a result, CF growth occurs mainly at the tip of the pyramidal electrode, which is confirmed by highresolution electron microscopy and elemental analysis. The RRAM exhibits highly uniform and low forming voltages (the average forming voltage and its standard deviation for 20 pyramid-based RRAMs are 0.645 and 0.072 V, respectively). Moreover, all multilevel resistance states for the RRAMs are clearly distinguished and show narrow distributions within 1 order of magnitude, leading to reliable cell-to-cell performance for MLC operation.
URI
http://pubs.kist.re.kr/handle/201004/66523
ISSN
1944-8244
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE