Structural signature and size-dependent mechanical response of frozen-in icosahedral phase in bulk metallic glasses

Title
Structural signature and size-dependent mechanical response of frozen-in icosahedral phase in bulk metallic glasses
Authors
장혜정Hyun Seok OhJe In LeeEun Soo Park
Keywords
Metallic glass; Icosahedral phase; Structural instability; Mechanical response; Deformation dynamics
Issue Date
2018-01
Publisher
Materials & design
Citation
VOL 138-139
Abstract
In the present study, we report structural signature and size-dependent mechanical response of frozen-in icosahedral phase (I-phase) embedded in Zr-(Ti, Nb, Al)-(Cu, Ni) bulk metallic glass (BMG)-forming alloys, which exhibit a narrow composition range overlapping between glass and I-phase forming region. Thus, the different sizes of the I-phase from tens of nanoscale precipitates to enhanced icosahedral short-range order in MG matrix can be obtained by controlling cooling history. I-phase particles with tens of nanoscale in BMGs do not contribute to extrinsic ductility due to limited blocking of the propagation of shear band. The shear band passes through the particle, splitting it into two pieces. On the other hand, BMGs with enhanced icosahedral short-range order, which can be evaluated by EXAFS analysis as well as calorimetric signal during isothermal annealing, exhibit enhanced ductility without strength reduction. Indeed, we examine the cut-off size of strain bursts and deformation dynamics of shear-avalanches through the statistical analysis of serration behavior. Icosahedral short-range order (ISRO)-embedded MGs exhibit weakened jammed state of the self-organized deformed zones, which results in the formation of numerous catastrophic deformed zones under relatively chaotic dynamics, and consequently multiple shear bands. These results would help deepen our understanding of the underlying mechanism that determines intrinsic ductility in BMGs via frozen-in ISRO, and ultimately give us a guideline for the design of promising BMGs with improved intrinsic ductility by manipulating local structural instability.
URI
http://pubs.kist.re.kr/handle/201004/66583
ISSN
0261-3069
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE