Optical Quenching Mechanism in InAs Quantum Dots in an Al0.95Ga0.05As Matrix

Title
Optical Quenching Mechanism in InAs Quantum Dots in an Al0.95Ga0.05As Matrix
Authors
송진동Y. H. ShinYongmin Kim
Keywords
InAs; Quantum dots; Al95GaAs
Issue Date
2017-01
Publisher
Journal of the Korean Physical Society
Citation
VOL 70, NO 1-107
Abstract
InAs quantum dots (QDs) were grown grown in an Al0.95Ga0.05As matrix by using the molecularbeam epitaxy technique. Photoluminescence (PL) measurements were made as functions of the magnetic fields and the temperature. Two prominent PL transitions were observed from QDs and defects in the matrix layer at 5 K. In magnetic fields, the transition from QDs does not change its spectral shape at magnetic fields up to 15 T, whereas the defect-related transition shows a blue-shift at magnetic fields above 8 T. By varying the temperature from 5 K to room temperature, the transition from QDs persists up to similar to 200 K and the defects-related transition quenches quickly near 70 K. The activation energies obtained by using an Arrhenius fitting of the PL intensities indicate that the excitons dissociated by thermal energy transfer into higher energy levels.
URI
http://pubs.kist.re.kr/handle/201004/66714
ISSN
0374-4884
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE