A Method for Robust Robotic Bipedal Walking on Rough Terrain: l1-optimal Event-based Feedback Controller

Title
A Method for Robust Robotic Bipedal Walking on Rough Terrain: l1-optimal Event-based Feedback Controller
Authors
오용환이종우김정훈
Keywords
humanoid; l1-optimalilty; rough terrain; Poincare map
Issue Date
2017-09
Publisher
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Citation
-1448
Abstract
Feedback controller for robotic bipedal walking models can be multi-layered, consisting of low-level continuoustime controller and high-level event-based controller. Stimulated by the success in our preceding study that demonstrates the validity of the l1-induced norm as an adequate performance measure, we suggest a systematic methodology to design optimal event-based feedback controller for bipedal models walking on rough terrains. More precisely, we first assume that the system is already equipped with a low-level continuous-time feedback controller, capable of stable flat-ground-walking, and then formulate the design problem of the high-level eventbased feedback control as the l1-optimal control problem for discrete-time linear systems defined on the linearized Poincar`e map. In order to validate the proposed methodology, nonlinear dynamic simulations are conducted with a simple biped model walking on rough terrain. The terrain slope randomly varies at each footstep while the magnitude of slope variation is bounded by some maximum value. Simulation results indicate that the optimal system equipped with the proposed controller can successfully overcome a rough terrain on which the original system could not walk and fall.
URI
http://pubs.kist.re.kr/handle/201004/66858
Appears in Collections:
KIST Publication > Conference Paper
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE