Efficient synthesis of Pt nanoparticles supported on hydrophobic graphitized carbon nanofibers for electrocatalysts using noncovalent functionalization

Title
Efficient synthesis of Pt nanoparticles supported on hydrophobic graphitized carbon nanofibers for electrocatalysts using noncovalent functionalization
Authors
오형석김한성
Issue Date
2011-10
Publisher
Advanced functional materials
Citation
VOL 21, NO 20-3960
Abstract
As an alternative to the oxidative acid treatment, a noncovalent pi-pi interaction method is employed to deposit Pt electrocatalysts on highly hydrophobic carbon nanofibers (CNFs) for the application of polymer electrolyte membrane (PEM) fuel cells. Three different functionalization agents, namely benzyl mercaptan (BM), 1-aminopyrene (AP), and 1-pyrenecarboxylic acid (PCA), are used to functionalize CNFs and the effect of these groups on the electrochemical properties is examined. While the BM and AP act as a poison to Pt catalyst, the functionalization of CNF with PCA improves the distribution and loading of Pt as well as reducing the sintering of Pt particles. From the carbon corrosion test, unlike the oxidative acid treatment, the PCA treatment sustains the corrosion resistance of CNFs because it preserves the intrinsic properties of CNFs without damaging their surface structure. Therefore, the PCA treatment is a very effective way to prepare catalysts for PEM fuel cells and also extended to the fabrication of graphitized-carbon-supported catalysts of other precious metal for various applications.
URI
http://pubs.kist.re.kr/handle/201004/67203
ISSN
1616-301X
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE