Tuning Porosity and Surface Area in Mesoporous Silicon for Application in Li-Ion Battery Electrodes

Title
Tuning Porosity and Surface Area in Mesoporous Silicon for Application in Li-Ion Battery Electrodes
Authors
김형석John B CookTerri C LinShauna RobbennoltEric DetsiBruce S DunnSarah H Tolbert
Issue Date
2017-06
Publisher
ACS Applied Materials & Interfaces
Citation
VOL 9, NO 22-19073
Abstract
This work aims to improve the poor cycle lifetime of silicon-based anodes for Li-ion batteries by tuning microstructural parameters such as pore size, pore volume, and specific surface area in chemically synthesized mesoporous silicon. Here we have specifically produced two different mesoporous silicon samples from the magnesiothermic reduction of ordered mesoporous silica in either argon or forming gas. In situ X-ray diffraction studies indicate that samples made in Ar proceed through a Mg2Si intermediate, and this results in samples with larger pores (diameter approximate to 90 nm), modest total porosity (34%), and modest specific surface area (50 m(2) g(-1)). Reduction in forming gas, by contrast, results in direct conversion of silica to silicon, and this produces samples with smaller pores (diameter approximate to 40 nm), higher porosity (41%), and a larger specific surface area (70 m(2) g(-1)). The material with smaller pores outperforms the one with larger pores, delivering a capacity of 1121 mAh g(-1) at 10 A g(-1) and retains 1292 mAh g(-1) at 5 A g(-1) after 500 cycles. For comparison, the sample with larger pores delivers a capacity of 731 mAh g(-1) at 10 A g(-1) and retains 845 mAh g(-1) at 5 A g(-1) after 500 cycles. The dependence of capacity retention and charge storage kinetics on the nanoscale architecture clearly suggests that these microstructural parameters significantly impact the performance of mesoporous alloy type anodes. Our work is therefore expected to contribute to the design and synthesis of optimal mesoporous architectures for advanced Li-ion battery anodes.
URI
http://pubs.kist.re.kr/handle/201004/67361
ISSN
1944-8244
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE