Nanoporous tin with a granular hierarchical ligament morphology as a highly stable Li-ion battery anode

Title
Nanoporous tin with a granular hierarchical ligament morphology as a highly stable Li-ion battery anode
Authors
김형석John B. CookEric DetsiYijin LiuYu-Lun LiangXavier PetrissansBruce DunnSarah H. Tolbert
Issue Date
2017-01
Publisher
ACS Applied Materials & Interfaces
Citation
VOL 9, NO 1-303
Abstract
Next generation Li-ion; batteries will require negative electrode materials with energy densities many-fold higher than that found in the graphitic carbon currently used in commercial Li-ion batteries. While various nanostructured alloying-type anode materials may satisfy that requirement, such materials do not always exhibit long cycle lifetimes and/or their processing routes are not always suitable for large-scale synthesis. Here, we report on a high-performance anode material for next generation Li-ion batteries made of nanoporous Sn powders with hierarchical ligament morphology. This material system combines both long cycle lifetimes (more than 72% capacity retention after 350 cycles), high,capacity (693 mAh/g, nearly twice that of commercial graphitic carbon), good charging/discharging capabilities (545 mAh/g at 1 A/g, 1.5C), and a scalable processing route that involves selective alloy corrosion. The good cycling performance of this system is attributed to its nanoporous architecture and its unique hierarchical ligament morphology, which accommodates the large volume changes taking place during lithiation, as confirmed by synchrotron-based ex-situ X-ray 3D tomography analysis. Our findings are an important step for the development of high-performance Li-ion batteries.
URI
http://pubs.kist.re.kr/handle/201004/67377
ISSN
1944-8244
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE