Recovery Mechanism of Degraded Black Phosphorus Field-Effect Transistors by 1,2-Ethanedithiol Chemistry and Extended Device Stability

Title
Recovery Mechanism of Degraded Black Phosphorus Field-Effect Transistors by 1,2-Ethanedithiol Chemistry and Extended Device Stability
Authors
황준연이원기곽도현나현수양진훈정민혜이아영이주형이종수
Keywords
1,2­ethanedithiol; black phosphorus; field effect transistors; phosphoric acid; recovering effect
Issue Date
2018-02
Publisher
Small
Citation
VOL 14, NO 6-7
Abstract
Black phosphorus (BP) has drawn enormous attention for both intriguing material characteristics and electronic and optoelectronic applications. In spite of excellent advantages for semiconductor device applications, the performance of BP devices is hampered by the formation of phosphorus oxide on the BP surface under ambient conditions. It is thus necessary to resolve the oxygen‐ induced degradation on the surface of BP to recover the characteristics and stability of the devices. To solve this problem, it is demonstrated that a 1,2‐ ethanedithiol (EDT) treatment is a simple and effective way to remove the bubbles formed on the BP surface. The device characteristics of the degraded BP field‐ effect transistor (FET) are completely recovered to the level of the pristine cases by the EDT treatment. The underlying principle of bubble elimination on the BP surface by the EDT treatment is systematically analyzed by density functional theory calculation, atomic force microscopy, and X‐ ray photoelectron spectroscopy analysis. In addition, the performance of the hexagonal boron nitride‐ protected BP FET is completely retained without changing device characteristics even when exposed to 30 d or more in air. The EDT‐ induced recovering effect will allow a new route for the optimization of electronic and optoelectronic devices based on BP.
URI
http://pubs.kist.re.kr/handle/201004/67436
ISSN
1613-6810
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE