Optimal design of a large scale Fischer-Tropsch microchannel reactor module using a cell-coupling method

Title
Optimal design of a large scale Fischer-Tropsch microchannel reactor module using a cell-coupling method
Authors
나종걸정익환박성호전정우모용기이종열정종태한종훈
Issue Date
2017-05
Publisher
Fuel processing technology
Citation
VOL 159-459
Abstract
In this study, a C5 + 0.5 BPD microchannel Fishcer-Tropsch process with a U-type cooling system was modeled using a cell coupling method, and multi-objective optimization was conducted using an artificial neural network as a surrogate model. Two objective functions (reactor core volume and maximum process temperature rise, ΔTmax) were to be minimized using seven design variables as optimization variables. Reactor core volume represents a reactor's compactness, which is essential for a micro-channel reactor, whereas ΔTmax is highly related to reactor stability. A Pareto optimal solution was obtained for a feasible ΔTmax range of 3.8– 6.8 K. The optimal reactor core volume for ΔTmax of 3.8 K was 1.45 times larger than that for ΔTmax of 6.8 K. As ΔTmax increases, the total reactor length is shortened while the total width and height remain relatively constant. A sensitivity analysis of Pareto optimization was conducted for two types of parameters: 1) coolant flow rate, and 2) fixed design parameters. Coolant flowrates over 750 LPM were found to be inefficient for the given conditions. Fixed design parameters were closely related to the capabilities of the reactor fabricator. The present study suggested a priority order for modifying fixed design parameters to increase compactness. Suitable points can be selected based on the specific requirements of plant conditions.
URI
http://pubs.kist.re.kr/handle/201004/67510
ISSN
0378-3820
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE