Gintonin absorption in intestinal model systems

Title
Gintonin absorption in intestinal model systems
Authors
임혜원이병환최선혜김현중박상덕김형춘황성희나승열
Issue Date
2018-01
Publisher
Journal of Ginseng Research
Citation
VOL 42, NO 1-41
Abstract
Background Recently, we identified a novel ginseng-derived lysophosphatidic acid receptor ligand, called gintonin. We showed that gintonin induces [Ca2+]i transient-mediated morphological changes, proliferation, and migration in cells expressing lysophosphatidic acid receptors and that oral administration of gintonin exhibits anti-Alzheimer disease effects in model mice. However, little is known about the intestinal absorption of gintonin. The aim of this study was to investigate gintonin absorption using two model systems. Methods Gintonin membrane permeation was examined using a parallel artificial membrane permeation assay, and gintonin absorption was evaluated in a mouse everted intestinal sac model. Results The parallel artificial membrane permeation assay showed that gintonin could permeate an artificial membrane in a dose-dependent manner. In the everted sac model, gintonin absorption increased with incubation time (from 0 min to 60 min), followed by a decrease in absorption. Gintonin absorption into everted sacs was also dose dependent, with a nonlinear correlation between gintonin absorption and concentration at 0.1– 3 mg/mL and saturation at 3– 5 mg/mL. Gintonin absorption was inhibited by the Rho kinase inhibitor Y-27632 and the sodium– glucose transporter inhibitor phloridzin. Moreover, lipid extraction with methanol also attenuated gintonin absorption, suggesting the importance of the lipid portion of gintonin in absorption. This result shows that gintonin might be absorbed through passive diffusion, paracellular, and active transport pathways. Conclusion The present study shows that gintonin could be absorbed in the intestine through transcellular and paracellular diffusion, and active transport. In addition, the lipid component of gintonin might play a key role in its intestinal absorption.
URI
http://pubs.kist.re.kr/handle/201004/67524
ISSN
1226-8453
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE