Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells

Title
Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells
Authors
지호일Sihyuk ChoiChris J. KucharczykYangang LiangXiaohang ZhangIchiro TakeuchiSossina M. Haile
Issue Date
2018-03
Publisher
Nature energy
Citation
VOL 3, NO 3-210
Abstract
Over the past several years, important strides have been made in demonstrating protonic ceramic fuel cells (PCFCs). Such fuel cells offer the potential of environmentally sustainable and cost-effective electric power generation. However, their power outputs have lagged behind predictions based on their high electrolyte conductivities. Here we overcome PCFC performance and stability challenges by employing a high-activity cathode, PrBa0.5Sr0.5Co1.5Fe0.5O5+δ (PBSCF), in combination with a chemically stable electrolyte, BaZr0.4Ce0.4Y0.1Yb0.1O3 (BZCYYb4411). We deposit a thin dense interlayer film of the cathode material onto the electrolyte surface to mitigate contact resistance, an approach which is made possible by the proton permeability of PBSCF. The peak power densities of the resulting fuel cells exceed 500 mW cm− 2 at 500 °C, while also offering exceptional, long-term stability under CO2.
URI
http://pubs.kist.re.kr/handle/201004/67698
ISSN
2058-7546
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE