Identification of an Actual Strain-Induced Effect on Fast Ion Conduction in a Thin-Film Electrolyte

Title
Identification of an Actual Strain-Induced Effect on Fast Ion Conduction in a Thin-Film Electrolyte
Authors
이해원김병국이종호김형철손지원지호일윤경중안준성장호원
Keywords
SOFC; Gadolinium-doped ceria; strain effect; ionic conductivity; Volmer?Weber growth; intrinsic strain; reciprocal space mapping
Issue Date
2018-05
Publisher
Nano letters
Citation
VOL 18, NO 5-2801
Abstract
Strain-induced fast ion conduction has been a research area of interest for nanoscale energy conversion and storage systems. However, because of significant discrepancies in the interpretation of strain effects, there remains a lack of understanding of how fast ionic transport can be achieved by strain effects and how strain can be controlled in a nanoscale system. In this study, we investigated strain effects on the ionic conductivity of Gd0.2Ce0.8O1.9-delta (100) thin films under well controlled experimental conditions, in which errors due to the external environment could not intervene during the conductivity measurement. In order to avoid any interference from perpendicular-to-surface defects, such as grain boundaries, the ionic conductivity was measured in the out-of-plane direction by electrochemical impedance spectroscopy analysis. With varying film thickness, we found that a thicker film has a lower activation energy of ionic conduction. In addition, careful strain analysis using both reciprocal space mapping and strain mapping in transmission electron microscopy shows that a thicker film has a higher tensile strain than a thinner film. Furthermore, the tensile strain of thicker film was mostly developed near a grain boundary, which indicates that intrinsic strain is dominant rather than epitaxial or thermal strain during thin-film deposition and growth via the Volmer-Weber (island) growth mode.
URI
http://pubs.kist.re.kr/handle/201004/67785
ISSN
1530-6984
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE