High­Performance and Uniform 1 cm2 Polymer Solar Cells with D1­A­D2­A­Type Random Terpolymers

Title
High­Performance and Uniform 1 cm2 Polymer Solar Cells with D1­A­D2­A­Type Random Terpolymers
Authors
손해정박성민신인정안형주윤재훈조제웅방준하
Keywords
solar cell; polymer
Issue Date
2018-05
Publisher
Advanced Energy Materials
Citation
VOL 8, NO 7-1701405-13
Abstract
For the commercial development of organic photovoltaics (OPVs), laboratory-scale OPV technology must be translated to large area modules. In particular, it is important to develop high-efficiency polymers that can form thick (>100 nm) bulk heterojunction (BHJ) films over large areas with optimal morphologies for charge generation and transport. Here, D1-A-D2-A random terpolymers composed of 2,2′-bithiophene with various proportions of 5,6-difluoro-4,7-bis(thiophen-2-yl)-2,1,3-benzothiadiazole and 5,6-difluoro-2,1,3-benzothiadiazole (FBT) are synthesized. It is found that incorporating small proportions of FBT into the polymer not only conserves the high crystallinity and favorable face-on orientation of the D-A copolymer FBT-Th4 but also improves the nanoscale phase separation of the BHJ film. Consequently, the random terpolymer PDT2fBT-BT10 exhibits a much improved solar cell efficiency of 10.31% when compared to that of the copolymer FBT-Th4 (8.62%). Moreover, due to this polymer’s excellent processability and suppressed overaggregation, OPVs with 1 cm2 active area based on 351 nm thick PDT2fBTBT10 BHJs exhibit high photovoltaic performance of 9.42%, whereas rapid efficiency decreases arise for FBT-Th4-based OPVs for film thicknesses above 300 nm. It is demonstrated that this random terpolymer can be used in large area and thick BHJ OPVs, and guidelines for developing polymers that are suitable for large-scale printing technologies are presented.
URI
http://pubs.kist.re.kr/handle/201004/67931
ISSN
1614-6832
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE