Influence of attrition milling on V/Ti catalysts for the selective oxidation of ammonia

Title
Influence of attrition milling on V/Ti catalysts for the selective oxidation of ammonia
Authors
권동욱이상문홍성창
Issue Date
2015-09
Publisher
Applied catalysis A, General
Citation
VOL 505-565
Abstract
Mechanochemical treatments can change the physicochemical characteristics of catalysts. Attrition milling was utilized in the preparation of catalysts from V2O5 and anatase TiO2, and the catalysts were applied for the study of selective catalytic oxidation (SCO). Catalysts comprising 2 wt% V/Ti were prepared by mechanochemical methods using different milling times, and these catalysts were used for the SCO of NH3 to N-2. The optimal calcination milling time was 3 h. The 2 wt% V/Ti catalyst prepared by attrition milling for 3 h (VTi-A.M3; where A.M in the catalyst name denotes attrition milling, and 3 is the milling time applied) gave rise to the highest N-2 yield (similar to 82%) at 250 degrees C. The dry attrition milling method is a dry method for the synthesis of the SCO catalyst, involving a combination of V2O5 and TiO2 powder. The properties of the catalyst were studied using physiochemical analyses, including BET surface area, X-ray diffraction (XRD), transmission electron microscopy (TEM), NH3 temperature programmed desorption (NH3-TPD), X-ray photoelectron spectroscopy (XPS), and H-2 temperature programmed reduction (H-2-TPR). Anatase, which is a metastable phase, underwent transformation into TiO2(II) due to the milling effect. The highest N-2 yield was achieved when the TiO2 crystallite size of the catalyst was 16 nm. The content of pentavalent vanadium species increased due to the milling effect. A correlation was identified between the V5+ species and the catalyst N-2 yield. VTi-A.M3 was found to lead to high-level selective catalytic oxidation of NH3, with active internal selective catalytic reduction (SCR) because of the presence of highly dispersed V5+ on the catalyst surface. The dry attrition milling method can be used to control the dispersion of vanadium on the catalyst surface, which can in turn improve the N-2 yield activity by increasing the ratio of V5+ species.
URI
http://pubs.kist.re.kr/handle/201004/68148
ISSN
0926-860X
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE