Nafion membranes with a sulfonated organic additive for the use in vanadium redox flow batteries

Title
Nafion membranes with a sulfonated organic additive for the use in vanadium redox flow batteries
Authors
한종희김형준장종현헨켄스마이어디억Yona LeeSangwon KimRolf HempelmannJihyun Kim
Keywords
membranes; Nafion; sulfonated copper phthalocyanine; sulfonated phthalimide; vanadium redox flow battery (VRFB)
Issue Date
2019-06
Publisher
Journal of applied polymer science
Citation
VOL 136, NO 21-47547-10
Abstract
Sulfonated copper phthalocyanine (CuPCSA) was embedded into Nafion membranes in ratios of 0, 1.25, 2.5, 5, and 7.5 wt %. The absence of CuPCSA related peaks in WAXS patterns indicated that CuPCSA did not form crystalline phases during membrane formation. Tensile strength and Young’s modulus were highest in the range of 2.5– 5 wt % CuPCSA. As demonstrated for Nafion 212, the weight gain and swelling in water-based solutions decreases when the sulfuric acid concentration increases from 0 to 2 M. In 2 M sulfuric acid, addition of CuPCSA increases the weight gain. In contact with VO2 +, blue CuPCSA is oxidatively hydrolyzed to form colorless sulfonated phthalimide. XPS analysis showed that (1) this reaction is quantitative and (2) that the sulfonated phthalimide does not leach out from the membrane during operation in the flow battery. The coulomb efficiency increases with the amount of phthalimide. This affects the energy efficiency so strongly, that it follows the same trend as the coulomb efficiency. During cycling, the cell with Nafion/7.5 wt % filler showed the highest discharge capacity and the lowest difference between charge and discharge capacity.
URI
http://pubs.kist.re.kr/handle/201004/69083
ISSN
0021-8995
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE