Molecular Tunability of Magnetic Exchange Bias and Asymmetrical Magnetotransport in Metalloporphyrin/Co Hybrid Bilayers

Title
Molecular Tunability of Magnetic Exchange Bias and Asymmetrical Magnetotransport in Metalloporphyrin/Co Hybrid Bilayers
Authors
민병철조준현변진호오인선박정민진미진이재광유정우
Issue Date
2019-01
Publisher
ACS Nano
Citation
VOL 13, NO 1-903
Abstract
Individual molecular spins are promising quantum states for emerging computation technologies. The “on surface” configuration of molecules in proximity to a magnetic film allows control over the orientations of molecular spins and coupling between them. The stacking of planar molecular spins could favor antiferromagnetic interlayer couplings and lead to pinning of the magnetic underlayer via the exchange bias, which is extensively utilized in ultrafast and high-density spintronics. However, fundamental understanding of the molecular exchange bias and its operating features on a device has not been unveiled. Here, we showed tunable molecular exchange bias and its asymmetrical magnetotransport characteristics on a device by using the metalloporphyrin/cobalt hybrid films. A series of the distinctive molecular layers showcased a wide range of the interfacial exchange coupling and bias. The transport behaviors of the hybrid bilayer films revealed the molecular exchange bias effect on a fabricated device, representing asymmetric characteristics on anisotropic and angle-dependent magnetoresistances. Theoretical simulations demonstrated close correlations among the interfacial distance, magnetic interaction, and exchange bias. This study of the hybrid interfacial coupling and its impact on magnetic and magnetotransport behaviors will extend functionalities of molecular spinterfaces for emerging information technologies.
URI
http://pubs.kist.re.kr/handle/201004/69110
ISSN
1936-0851
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE