Determination of lithium diffusion coefficient and reaction mechanism into ultra-small nanocrystalline SnO2 particles

Title
Determination of lithium diffusion coefficient and reaction mechanism into ultra-small nanocrystalline SnO2 particles
Authors
하흥용정경윤굴람 알리쉬라즈Supriya A. PatilMashkoor Ahmad김학성
Issue Date
2019-04
Publisher
Journal of power sources
Citation
VOL 491-236
Abstract
High-performance electrode materials for lithium-ion batteries (LIBs) are urgently required to meet the requirement of the widespread use of energy storage devices from small-to large-scale applications. In this regard, ultra-small nanocrystalline SnO2 particles with a size of ∼3  nm are synthesized using a simple hydrothermal method and investigated as a high capacity anode material for LIBs. The SnO2 anode shows a high reversible capacity of 1026 mAh g− 1 at a current density of 150  mA  g− 1. The kinetic study of the anode material is conducted and compared using cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic intermittent titration techniques and the lithium diffusion coefficient at open circuit potential is calculated to be 3.71978  ×  10− 13, 1.818  14, and ∼1.82  16  cm2  s− 1, respectively. The reaction mechanism of highly reversible SnO2 nanoparticles is investigated using ex-situ XRD, XPS, in-situ X-ray absorption near edge spectroscopy, and TEM and the results reveal the formation of lithium-tin alloy in the lithiated electrode and reversible formation of SnO2 upon delithiation.
URI
http://pubs.kist.re.kr/handle/201004/69218
ISSN
0378-7753
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE