Unusual Thermal Conductivity of Carbon Nanosheets with Self-Emerged Graphitic Carbon Dots

Title
Unusual Thermal Conductivity of Carbon Nanosheets with Self-Emerged Graphitic Carbon Dots
Authors
이성호이동수박민손수영조해나정건영조한익
Keywords
thermal conductivity; carbon nanosheet; graphitic carbon dot; hierarchical structure
Issue Date
2019-04
Publisher
ACS Applied Materials & Interfaces
Citation
VOL 11, NO 14-13623
Abstract
The thermal conductivity (κ) of two-dimensional conducting and transparent carbon nanosheets (CNSs) prepared by a catalyst- and transfer-free process is calculated for the first time by the optothermal Raman technique. A systematic structural analysis of CNSs reveals that the thickness of polymer films affects the interaction between molecules and a Si wafer significantly, thus helping to determine the ratio of sp2 and sp3 bonding configurations of carbon (C) atoms in the CNS. Notably, the holding time of carbonization can realize a hierarchical structure with graphitic carbon dots emerging from the CNS through the rearrangement of carbon atoms, leading to the excellent κ value of 540 W/(m·K) at 310 K. It is demonstrated that an appropriate increase in carbonization time can be an effective approach for improving the ratio of sp2- to sp3-bonded C atoms in the CNS. The thermal conductivity of the CNS with the highest ratio of sp2- to sp3-bonded C atoms exhibits superior behavior and is comparable to that of reduced graphene oxide and supported graphene, respectively. Finally, when the CNS with the highest κ value of 540 W/(m·K) was applied to a heater as the heat-dissipating material, the heater showed the temperature decrease by 14 °C compared to the case without the CNS. The catalyst- and transfer-free approach for the synthesis of CNSs is highly desirable for use as heat sink materials or substrates with heat dissipation functions for extensively integrated electronic devices.
URI
http://pubs.kist.re.kr/handle/201004/69307
ISSN
1944-8244
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE