Zn-induced synthesis of porous SiOx materials as negative electrodes for Li secondary batteries

Title
Zn-induced synthesis of porous SiOx materials as negative electrodes for Li secondary batteries
Authors
정우상김한슬조우석박다혜김경배최현주김재헌
Keywords
Lithium battery; Anode; Silicon oxide; Porous structure; Zinc; Evaporation
Issue Date
2019-09
Publisher
Journal of alloys and compounds
Citation
VOL 803-331
Abstract
Silicon oxide-based materials for Li-ion battery anodes have attracted extensive attention due to their higher capacity than graphite materials and better cycling performance compared to Si-based materials. However, the cycle performance needs to be further enhanced if they are to be widely used in commercial applications. In this study, we propose a simple strategy to prepare porous SiOx materials. Zn and SiO were combined by a high-energy mechanical milling process. The Zn/SiO composite was then heated to 900  °C and the Zn-based materials were removed by evaporation as Zn is a metal with a relatively low melting point (419.5  °C) and boiling point (907  °C). This process resulted in the production of porous SiOx materials with a large number of mesopores. Characterizations of the materials by X-ray diffraction analysis, X-ray photoelectron spectroscopy, and electron microscopy confirmed the synthesis of porous SiOx materials. The cycling performance of these materials was found to be improved. Carbon incorporation was performed in an effort to further enhance their performance, and the cycling performance of these porous SiOx/C composite materials was considerably enhanced, thus indicating that the strategy involving both a porous structure and carbon incorporation is very effective for improvement of the cycling stability of Li-alloy-based active materials.
URI
http://pubs.kist.re.kr/handle/201004/69544
ISSN
0925-8388
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE