Full metadata record

DC FieldValueLanguage
dc.contributor.author김창수-
dc.contributor.author김광호-
dc.contributor.authorAymerick Eudes-
dc.contributor.author정근홍-
dc.contributor.author유창근-
dc.contributor.authorArthur Ragauskas-
dc.date.accessioned2021-06-09T04:22:25Z-
dc.date.available2021-06-09T04:22:25Z-
dc.date.issued2019-07-
dc.identifier.citationVOL 116, NO 28-13824-
dc.identifier.issn0027-8424-
dc.identifier.other52972-
dc.identifier.urihttp://pubs.kist.re.kr/handle/201004/69602-
dc.description.abstractDespite the enormous potential shown by recent biorefineries, the current bioeconomy still encounters multifaceted challenges. To develop a sustainable biorefinery in the future, multidisciplinary research will be essential to tackle technical difficulties. Herein, we leveraged a known plant genetic engineering approach that results in aldehyde-rich lignin via down-regulation of cinnamyl alcohol dehydrogenase (CAD) and disruption of monolignol biosynthesis. We also report on renewable deep eutectic solvents (DESs) synthesized from phenolic aldehydes that can be obtained from CAD mutant biomass. The transgenic Arabidopsis thaliana CAD mutant was pretreated with the DESs and showed a twofold increase in the yield of fermentable sugars compared with wild type (WT) upon enzymatic saccharification. Integrated use of lowrecalcitrance engineered biomass, characterized by its aldehydetype lignin subunits, in combination with a DES-based pretreatment, was found to be an effective approach for producing a high yield of sugars typically used for cellulosic biofuels and biobased chemicals. This study demonstrates that integration of renewable DES with plant genetic engineering is a promising strategy in developing a closed-loop process.-
dc.publisherProceedings of the National Academy of Sciences of the United States of America-
dc.subjectlignin-
dc.subjectdeep eutectic solvent-
dc.subjectbiomass pretreatment-
dc.subjectbioenergy-
dc.subjecttransgenic biomass-
dc.titleIntegration of renewable deep eutectic solvents with engineered biomass to achieve a closed-loop biorefinery-
dc.typeArticle-
dc.relation.page1381613824-
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE