Full metadata record

DC FieldValueLanguage
dc.contributor.author이광렬-
dc.contributor.author히로시 미즈세키-
dc.contributor.authorAvanish Mishra-
dc.contributor.authorSwanti Satsangi-
dc.contributor.authorArunkumar Chitteth Rajan-
dc.contributor.authorAbhishek K. Singh-
dc.date.accessioned2021-06-09T04:22:29Z-
dc.date.available2021-06-09T04:22:29Z-
dc.date.issued2019-02-
dc.identifier.citationVOL 10, NO 4-785-
dc.identifier.issn1948-7185-
dc.identifier.other53033-
dc.identifier.urihttp://pubs.kist.re.kr/handle/201004/69656-
dc.description.abstractFunctionalized MXene has emerged a promising class of two-dimensional materials having more than tens of thousands of compounds, whose uses may range from electronics to energy applications. Other than the band gap, these properties rely on the accurate position of the band edges. Hence, to synthesize MXenes for various applications, a prior knowledge of the accurate position of their band edges at an absolute scale is essential-
dc.description.abstractcomputing these with conventional methods would take years for all the MXenes. Here, we develop a machine learning model for positioning the band edges with GW level of accuracy having a minimum root-mean-squared error of 0.12 eV. An intuitive model is proposed based on the combination of Perdew-Burke-Ernzerhof band edge and vacuum potential having a correlation of 0.93 with GW band edges. These models can be utilized to identify MXenes for a desired application in an accelerated manner.-
dc.publisherJournal of Physical Chemistry Letters-
dc.titleAccelerated Data-driven Accurate Positioning of the Band-edges of MXenes-
dc.typeArticle-
dc.relation.page780785-
Appears in Collections:
KIST Publication > Article
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE